Decreasing global transcript levels over time suggest that phytoplasma cells enter stationary phase during plant and insect colonization.

نویسندگان

  • D Pacifico
  • L Galetto
  • M Rashidi
  • S Abbà
  • S Palmano
  • G Firrao
  • D Bosco
  • C Marzachì
چکیده

To highlight different transcriptional behaviors of the phytoplasma in the plant and animal host, expression of 14 genes of "Candidatus Phytoplasma asteris," chrysanthemum yellows strain, was investigated at different times following the infection of a plant host (Arabidopsis thaliana) and two insect vector species (Macrosteles quadripunctulatus and Euscelidius variegatus). Target genes were selected among those encoding antigenic membrane proteins, membrane transporters, secreted proteins, and general enzymes. Transcripts were detected for all analyzed genes in the three hosts; in particular, those encoding the antigenic membrane protein Amp, elements of the mechanosensitive channel, and two of the four secreted proteins (SAP54 and TENGU) were highly accumulated, suggesting that they play important roles in phytoplasma physiology during the infection cycle. Most transcripts were present at higher abundance in the plant host than in the insect hosts. Generally, transcript levels of the selected genes decreased significantly during infection of A. thaliana and M. quadripunctulatus but were more constant in E. variegatus. Such decreases may be explained by the fact that only a fraction of the phytoplasma population was transcribing, while the remaining part was aging to a stationary phase. This strategy might improve long-term survival, thereby increasing the likelihood that the pathogen may be acquired by a vector and/or inoculated to a healthy plant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phytoplasma Effector SAP54 Hijacks Plant Reproduction by Degrading MADS-box Proteins and Promotes Insect Colonization in a RAD23-Dependent Manner

Pathogens that rely upon multiple hosts to complete their life cycles often modify behavior and development of these hosts to coerce them into improving pathogen fitness. However, few studies describe mechanisms underlying host coercion. In this study, we elucidate the mechanism by which an insect-transmitted pathogen of plants alters floral development to convert flowers into vegetative tissue...

متن کامل

Analysis of rpoS mRNA in Salmonella dublin: identification of multiple transcripts with growth-phase-dependent variation in transcript stability.

In Salmonella dublin, rpoS encodes an alternative sigma factor of the RNA polymerase that activates a variety of stationary-phase-induced genes, including some virulence-associated genes. In this work, we studied the regulation and transcriptional organization of rpoS during growth. We found two transcripts, 2.3 and 1.6 kb in length, that represent the complete rpoS sequence. The 2.3-kb transcr...

متن کامل

Dramatic Transcriptional Changes in an Intracellular Parasite Enable Host Switching between Plant and Insect

Phytoplasmas are bacterial plant pathogens that have devastating effects on the yields of crops and plants worldwide. They are intracellular parasites of both plants and insects, and are spread among plants by insects. How phytoplasmas can adapt to two diverse environments is of considerable interest; however, the mechanisms enabling the "host switching" between plant and insect hosts are poorl...

متن کامل

Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity.

Many insect-transmissible pathogens are transmitted by specific insect species and not by others, even if they are closely related. The molecular mechanisms underlying such strict pathogen-insect specificity are poorly understood. Candidatus Phytoplasma asteris, OY strain, line W (OY), is a phytopathogenic bacterium transmitted from plant to plant by sap-feeding insect vectors (leafhoppers). Ou...

متن کامل

Microarray-based characterization of the Listeria monocytogenes cold regulon in log- and stationary-phase cells.

Whole-genome microarray experiments were performed to define the Listeria monocytogenes cold growth regulon and to identify genes differentially expressed during growth at 4 and 37 degrees C. Microarray analysis using a stringent cutoff (adjusted P < 0.001; >/=2.0-fold change) revealed 105 and 170 genes that showed higher transcript levels in logarithmic- and stationary-phase cells, respectivel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 81 7  شماره 

صفحات  -

تاریخ انتشار 2015